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What is the reliability gain achieved by the health monitoring
system?

[Question asked by an aircraft manufacturer]
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What is a smart system?

A system that can utilize information to optimize its operation
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Information in reliability:
Bayesian toolbox
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Bayesian analysis: learning as an inverse problem

Advanced Monte Carlo methods s
for Bayesian analysis
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Bayesian analysis: sequential learning

Methods such as: 4 : .
* Kalman filters
*  Kriging

» (Gaussian processes

+ Dynamic Bayesian networks
are all special instances of a
Bayesian analysis
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Bayesian analysis: sequential learning TUT

Methods such as:
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Bayesian analysis: sequential learning TUM
Reduced uncertainty translates 45T
to a change in reliability
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Bayesian decision making TUT

Provides a formal approach to assessing the effect of information on the operation of the system
In autonomous systems, it can be used (but seldomly is) for optimizing the decisions

c(e) +cla,.x)

Monitoring Actionsa System Utility u /
outcome Z state X Costc
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Value of information TLITI

without additional information: with additional information:
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Value of information TUT
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Influence diagrams as concise graphical
representations of decision problems
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Sequential decision making TUT

e.g. Partially observable Markovian decision processes (POMDP)
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Autonomous systems:
Reliability of environment sensing
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Sensor systems in autonomous cars Tum
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Rear laser scanner
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Adapted from: https://www.audi-mediacenter.com/de/fotos/album/audi-a7-piloted-driving-concept-646 (28.09.2016) 17

Reliability of environment sensing TUTI

» Existing standards (e.g. ISO 26262) not directly applicable
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* Reliability of sensors is highly dependent on environment g 4 o
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Berk M. et al. (2017). WCX17: SAE World Congress, Detroit.
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Assess sensor reliability in service

Assess sensor reliability in service TUT
(shadow mode)

Challenge: No reference truth is available

7 sensors installed on a vehicle:

# of deviating sensors | all sensors are correct — or all are wrong
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Assessing sensor reliability without ground truth Tum

Incomplete knowledge can be represented by a likelihood function

1 ‘
= Beta binomial model
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Assessing sensor reliability without ground truth TUM

Incomplete knowledge can be represented by a likelihood function
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Assessing sensor reliability without ground truth

Model parameters can be learned with partial information
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Structural health monitoring:
Smart integrity management
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What is the reliability gain achieved by the health monitoring
system?

[Question asked by an aircraft manufacturer]
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Reliability without monitoring information TUT
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Reliability with monitoring information TUM

Increased inspection intervals
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Optimal calibration of monitoring-based decisions TUT

203

Expected cost
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_____________________________________
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Monitoring and sensors for risk control:
Reliability of warning systems

warning
station |

. Sattele M., Briindl M.
| , Straub D. (2015)
warning : RESS, 142:192-202
station #
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Warning and alarm systems: POD vs PFA TUT
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Smart users: The cry wolf effect TUTI
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Hazard
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Bayesian network model
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Smart society:
Planning in flexible infrastructure systems
under large scale uncertainties

:@ y
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Infrastructure planning and management T|_|T|
is a sequential decision process

N 1833 t0 1914 1980 to 1994 1994 to 2007
A Densification ket < 12025 Densification &bet < 03172 - Densification
Exploration  dget = 02025 — Exploration  Hbet > 03172 1994
— 1033 — 190

Source: Strano, E., V. Nicosia, V. Latora, S. Porta and M. Barthélemy (2012). Elementary processes
governing the evolution of road networks. Nature Scientific Reports 2: 296. 39

Infrastructure planning and management T|_|T|
is a sequential decision process

Smart managment considers future information

and potential for adaptation in current decisions =/’?‘ = Tis
about infrastructure investments ji
POMDP models allow investigating this effect >~ Dr (D :
t+
\ K[/‘\
— V - V -

t t+1
- r£+1
Spackova O., Straub D. (2017). Sustainable and Resilient

Infrastructure, 2(1): 37-58.
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Decisions on current capacity should consider T|_|T|
future ability for adaptation
Infrastructure planning example

Optimal initial overdesign in
function of system flexibility
: _Optimal initial capacity

Flexibility

0
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Straub and Spackova (2016). Initial capacity

Initial demand
41
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Reliability of smart systems:
Challenges & opportunities
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Up to what degree can smart systems be

modelled explicitly?
ambiguity
Easiness

of data to
read
| Indicators
easy to read

Clear display |
of range for
comparison I and locate

Consider human reliability:

Smart systems based on Al
may become equally complex

The performance can be
strongly dependent on
environment & situation

Misperception
of critical data
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Experience

|
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Crew trained
to understand
the scenario

Zwirglmaier et al. (2017).
RESS, 158: 117-129.
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Need for explicit and quantitative demonstration of reliability of

complex processes currently carried out by en

... and with much higher reliability
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TUTI
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Blackbox approach

Opportunities:
+ Shadow mode
+ Virtual testing and verification

Challenges:
* High reliabilty levels
+ Data protection
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Smart system

—p #errors

45

Implicit choices have to be made explicit

Daniel Straub | Reliability of smart systems

www.moralmachine.mit.edu
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Smart systems allow for adaptation Tum

Decision rules can be changed much easier than hardware updates

Reliability can be increased over the life-time of a system
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