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What is the reliability gain achieved by the health monitoring
system?
[Question asked by an aircraft manufacturer]
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What is a smart system?

A system that can utilize information to optimize its operation

Smart systems
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Information in reliability:
Bayesian toolbox

Bayesian analysis
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Existing
model

New information

Updated 
model
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Advanced Monte Carlo methods
for Bayesian analysis

Straub D., Papaioannou I., (2015). Journal of 
Engineering Mechanics, 314: 538–556.

Bayesian analysis: learning as an inverse problem
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Stiffness k2

Stiffness k1

Methods such as: 
• Kalman filters
• Kriging
• Gaussian processes
• Dynamic Bayesian networks
are all special instances of a 
Bayesian analysis

Bayesian analysis: sequential learning
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Methods such as: 
• Kalman filters
• Kriging
• Gaussian processes
• Dynamic Bayesian networks
are all special instances of a 
Bayesian analysis

Bayesian analysis: sequential learning
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Physics-based DBN

Reduced uncertainty translates
to a change in reliability

Straub D. (2009). Journal of Engineering 
Mechanics, 135(10): 1089-1099.

Bayesian analysis: sequential learning
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Provides a formal approach to assessing the effect of information on the operation of the system
In autonomous systems, it can be used (but seldomly is) for optimizing the decisions

Bayesian decision making
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Value of information
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without additional information: with additional information:
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Value of information
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Straub D. (2014). Structural Safety 49: 75-86

Influence diagrams as concise graphical
representations of decision problems
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e.g. Partially observable Markovian decision processes (POMDP)

Sequential decision making
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Autonomous systems:
Reliability of environment sensing
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Sensor systems in autonomous cars

17Adapted from: https://www.audi-mediacenter.com/de/fotos/album/audi-a7-piloted-driving-concept-646 (28.09.2016)

Zentrales 
Fahrerassistenzsteuergerät

• Existing standards (e.g. ISO 26262) not directly applicable

• Reliability of sensors is highly dependent on environment

• Model-based approaches require long development times

• Classical testing requires reference truth

• High reliability requirements necessitate large test efforts

Reliability of environment sensing
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Berk M. et al. (2017). WCX17: SAE World Congress, Detroit.
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Assess sensor reliability in service
(shadow mode)

19

Challenge: No reference truth is available

7 sensors installed on a vehicle:

Assess sensor reliability in service
(shadow mode)
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all sensors are correct – or all are wrong
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Incomplete knowledge can be represented by a likelihood function

Assessing sensor reliability without ground truth
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Beta binomial model

Incomplete knowledge can be represented by a likelihood function

Assessing sensor reliability without ground truth
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Model parameters can be learned with partial information

Assessing sensor reliability without ground truth
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Warning:
What one learns depends on the model assumption

Berk M. et al. 
(in preparation)

Structural health monitoring: 
Smart integrity management
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What is the reliability gain achieved by the health monitoring
system?
[Question asked by an aircraft manufacturer]

Monitoring data is used to
updated reliability

Whenever reliability threshold
is exceeded, an inspection is
required

Model of
aircraft operation
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Reliability without monitoring information
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Reliability with monitoring information

28

with SHM

Daniel Straub | Reliability of smart systems

Increased inspection intervals
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Optimal calibration of monitoring-based decisions
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Cottone G., Gollwitzer S., 
Heckenberger U., Straub D. 
(2013). Proc. IWSHM 9, 
Stanford University.

Value of 
Information

SHM is frequently applied in infrastructure systems

30Daniel Straub | Reliability of smart systems
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Monitoring and sensors for risk control:
Reliability of warning systems

Warning systems story

32Daniel Straub | Reliability in a smart world

Sättele M., Bründl M. 
Straub D. (2015) 
RESS, 142:192-202

Source: C. Graf (WSL)
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Warning and alarm systems: POD vs PFA

Receiver operator characteristics
(ROC)

Warning
Threshold 2:

Warning
Threshold 1:

Optimal monitoring

Smart users: The cry wolf effect
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Bayesian network model
of the warning system

35

Hazard

Warning

Optimization of sensor interpretation
through influence diagram

36

Hazard

Warning
Probability of false alarm
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Pareto optimal system configurations
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Smart society: 
Planning in flexible infrastructure systems
under large scale uncertainties

How much capacity do we need in the
face of large scale uncertainties?

38
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Infrastructure planning and management
is a sequential decision process

39Daniel Straub | Reliability of smart systems
Source: Strano, E., V. Nicosia, V. Latora, S. Porta and M. Barthélemy (2012). Elementary processes 
governing the evolution of road networks. Nature Scientific Reports 2: 296.

Smart managment considers future information
and potential for adaptation in current decisions
about infrastructure investments

POMDP models allow investigating this effect

Špačková O., Straub D. (2017). Sustainable and Resilient 
Infrastructure, 2(1): 37-58.

Infrastructure planning and management
is a sequential decision process

40Daniel Straub | Reliability of smart systems
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Infrastructure planning example

Optimal initial overdesign in 
function of system flexibility

Straub and Špačková (2016). 

Decisions on current capacity should consider
future ability for adaptation

41Daniel Straub | Reliability of smart systems

Reliability of smart systems:
Challenges & opportunities
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Consider human reliability:

Smart systems based on AI 
may become equally complex

The performance can be
strongly dependent on 
environment & situation

Up to what degree can smart systems be
modelled explicitly?

43Daniel Straub | Reliability of smart systems

Zwirglmaier et al. (2017). 
RESS, 158: 117–129.

… and with much higher reliability

Need for explicit and quantitative demonstration of reliability of
complex processes currently carried out by engineers or users

44Daniel Straub | Reliability of smart systems
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Opportunities:
• Shadow mode
• Virtual testing and verification

Challenges:
• High reliabilty levels
• Data protection

Blackbox approach

45Daniel Straub | Reliability of smart systems

Smart system # errors

Implicit choices have to be made explicit

46Daniel Straub | Reliability of smart systems

www.moralmachine.mit.edu
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Decision rules can be changed much easier than hardware updates

Reliability can be increased over the life-time of a system

Smart systems allow for adaptation

47Daniel Straub | Reliability of smart systems

Engineering Risk Analysis @ TUM
www.era.bgu.tum.de

48
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